OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5513
Stochastic Systems
Fall 2007
Final Exam

PLEASE DO ALL FIVE PROBLEMS

Name : \qquad

E-Mail Address: \qquad

Problem 1:

Suppose height to the bottom of clouds is a Gaussian random variable X for which $a_{X}=4000 \mathrm{~m}$ and $\sigma_{X}=1000 \mathrm{~m}$. A person bets that cloud height tomorrow will fall in the set $A=\{1000 \mathrm{~m}<X \leq 3300 \mathrm{~m}\}$ while a second person bets that height will be satisfied by $B=\{2000 \mathrm{~m}<X \leq 4200 \mathrm{~m}\}$. A third person bets they are both correct. Find the probabilities that each person will win the bet.

Problem 2:

A certain "soft" limiter accepts a random input voltage X and limits the amplitudes of an output random variable Y according to

$$
Y=\left\{\begin{array}{cc}
V\left(1-e^{-X / a}\right), & X \geq 0 \\
-V\left(1-e^{X / a}\right), & X<0
\end{array},\right.
$$

where $V>0$ and $a>0$ are constants. Show that the probability density of Y is

$$
f_{Y}(y)=\frac{a}{(V-y)} f_{X}\left[a \ln \left(\frac{V}{V-y}\right)\right] u(y)+\frac{a}{(V+y)} f_{X}\left[-a \ln \left(\frac{V}{V+y}\right)\right] u(-y)
$$

where $f_{X}(x)$ is the probability density of X.

Problem 3:

Given two random variables X and Y, find the probability density function of the random variable

$$
Z=\frac{\min (X, Y)}{\max (X, Y)}
$$

in terms of $f_{X}(x)$ and $f_{Y}(y)$.

Problem 4:

Given $W=(a X+3 Y)^{2}$ where X and Y are zero-mean random variables with variances $\sigma_{X}^{2}=4$ and $\sigma_{Y}^{2}=16$. Their correlation coefficient is $\rho=-0.5$.
a) Find a value for the parameter a that minimizes the mean value of W.
b) Find the minimum mean value.

Problem 5:

Given two random processes $X(t)$ and $Y(t)$. Find expressions for autocorrelation function of $W(t)=X(t)+Y(t)$ if
a) $X(t)$ and $Y(t)$ are correlated.
b) They are uncorrelated.
c) Thet are uncorrelated with zero-means.

